Homework 3

(Due date: March 12th @ 5:30 pm)

Presentation and clarity are very important! Show your procedure!

PROBLEM 1 (25 PTS)

a) Complete the timing diagram of the circuit shown below. (5 pts)

b) Complete the timing diagram of the circuit whose VHDL description is shown below: (5 pts)

c) Complete the timing diagram of the circuits shown below: (15 pts)

PROBLEM 2 (15 PTS)

Complete the timing diagram of the circuit shown below: (8 pts)

• Complete the VHDL description of the synchronous sequential circuit whose truth table is shown below: (7 pts)

library ieee; use ieee.std_logic_1164.all;	clrn d	clk	A	в	Q _{t+1}
entity my_ff is	1		0	0	С
clrn, clk: in std_logic; q: out std_logic);	1 _		0	1	Q_{t}
end my_ff;	1	<u>_</u>	1	0	1
architecture a of my_ff is	1	1	1	1	
begin	_				Υt
end a;	0	Х	Х	Х	0

PROBLEM 3 (15 PTS)

- Design a modulo-200 counter with enable, synchronous clear, and synchronous load.
- Asynchronous input: resetn
- Synchronous inputs:
 - \checkmark E: This is the enable input. It increases the count every time it is asserted (E = 1).
 - ✓ sclr: It clears the count (it requires E = 1)
- Outputs:
 - \checkmark _Q: This is the count.
 - $\checkmark~$ z: It is asserted only when the maximum count is reached.
- You need to determine the minimum number of bits *n* that it is required for the count.
- You can use adder units, registers, logic gates, and MUXes.

counter modulo-200

PROBLEM 4 (35 PTS)

- The following circuit is a parallel/serial load shift register with enable input. Shifting operation: s_1=0. Parallel load: s_1=1.
 - Write a structural VHDL code. You MUST create a file for: i) flip flop, ii) MUX 2-to-1, and iii) top file (where you will interconnect the flip flops and MUXes). Provide a printout. (15 pts)
 - ✓ Write a VHDL testbench according to the timing diagram shown below. Complete the timing diagram by simulating your circuit (Timing Simulation). The clock frequency must be 100 MHz with 50% duty cycle. Provide a printout. (20 pts)

PROBLEM 5 (10 PTS)

Attach a printout of your Initial Project Report (no more than a page). This report should contain the project title, the project description, and the current status of the project. Use the provided template (Final Project – Report Template.docx).